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Abstract
In this paper we derive and discuss the boundary conditions for the electron
wavefunction in general Ga1−x InxNyAs1−y-based heterostructures described
by the band anticrossing model. The use of these boundary conditions greatly
simplifies the calculation of, for example, transition energies in quantum wells.
We then apply the derived equations to model the temperature-dependent
bandgap of Ga1−x Inx NyAs1−y /GaAs quantum well structures with high indium
concentrations. From a fit to our experimental photoreflectance data we
find evidence that the effective nitrogen level EN in the band anticrossing
Hamiltonian, measured with respect to the valence band edge, shifts to higher
energies with decreasing temperature. This supports and extends similar results
reported in the literature for low indium content epilayers.

1. Introduction

In recent years, Ga1−x Inx NyAs1−y has attracted considerable interest as a promising material
for the realization of optoelectronic devices operating at telecom wavelengths in the near-
infrared. From a band structure point of view, the properties of this quaternary alloy are quite
unusual: incorporation of only a few per cent of nitrogen into Ga(In)As leads to a strong
bandgap reduction, the appearance of the so-called E+ band above the band edge, an increased
effective electron mass and a significant conduction band nonparabolicity [1–7]. In the so-
called band anticrossing (BAC) model [4] these effects are interpreted to be the result of a
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repulsive interaction between the conduction band and a (strongly localized) nitrogen-related
energy level EN above the conduction band edge. For bulk material the model Hamiltonian is(

EM(k) VNM

VNM EN

)
(1)

where EM(k) is the conduction band dispersion of the host Ga1−x Inx As matrix M and VNM

represents the coupling of the latter with the nitrogen level. By solving the characteristic
equation ∣∣∣∣ EM(k)− E VNM

VNM EN − E

∣∣∣∣ = 0 (2)

one obtains the k-dependent eigenvalues of (1), which correspond to the experimentally
observed upper E+(k) and lower E−(k) (Ga1−x Inx NyAs1−y conduction band) states. VNM

depends on the nitrogen concentration y as [4, 7]

VNM = CNM
√

y, (3)

where CNM is a constant coupling parameter. It has also been pointed out in [7] that EN and
EM are themselves y-dependent. Therefore, EM(k) actually represents the conduction band
dispersion of Ga1−x Inx NyAs1−y , neglecting the interaction with EN.

It is actually quite nontrivial that an approach as simple as the model just presented
should be able to describe the complex effects of nitrogen on the Ga1−x Inx NyAs1−y band
structure. Indeed, the results of empirical pseudopotential calculations [8] suggest that the
observed anticrossing in GaNyAs1−y can, in general, not be ascribed to the interaction of
the conduction band with a single nitrogen level. The incorporation of nitrogen into GaAs
removes the translational symmetry of the crystal, thus splitting, for example, the L1c valleys
into a1(L1c) + t2(L1c) states and X1c into a1(X1c) + e(X1c). The conduction band valley �1c

remains as a1(�1c). Higher-energy host crystal bands are also perturbed, producing, among
others, a1 states of their own. In particular, in the dilute nitrogen regime, an additional nitrogen
localized state built from many high-energy host bands forms above the conduction band
minimum of GaAs. However, all states of the same symmetry representation can be expected
to interact under the perturbation due to the presence of N, i.e. we should have a coupling
and anticrossing of all a1-like states (�, X, L band edges, etc) instead of the two-level BAC
approach where only the interaction of the conduction band with the localized nitrogen level
EN is taken into account. Applying the BAC model therefore actually means that we replace the
complex interaction with higher energy states by the coupling to only one ‘effective’ nitrogen
level EN (which, in general, may not correspond to a real state) to get a simple description
of the Ga(In)NAs band structure. Indeed, there is some theoretical support for this initially
semi-empirical approach: using a Green function model it has been shown that the two-level
BAC model (with an ‘effective’ EN) can be derived explicitly, if only the influence of the
onsite change in orbital energies due to the N impurity is considered [9]. In further numerical
calculations the authors also find evidence that the model should stay appropriate when treating
the full Hamiltonian.

From an experimental point of view this result is confirmed by the fact that the BAC model
has been applied very successfully so far. It has proven its ability to accurately describe not
only the electronic states in bulk material but also in quantum well (QW) structures many
times and can therefore be regarded as well established (see, e.g., [1–5, 10–14] and references
therein). However, the technologically important calculation of quantum well states usually
requires a numerical diagonalization of the BAC Hamiltonian. In the following we suggest
a different, much simpler approach which circumvents this cumbersome procedure. The
latter takes advantage of the special boundary conditions for the electron wavefunction in
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Ga1−x Inx NyAs1−y heterostructures and is discussed in the next two sections. Then we proceed
with a first typical application of the described calculation technique, namely the theoretical
modelling of the temperature-dependent effective bandgap in Ga1−x Inx NyAs1−y /GaAs QW
structures. In particular we present evidence from a fit to our experimental photoreflectance
(PR) data that the effective nitrogen level EN in the BAC Hamiltonian, measured with respect
to the valence band edge, shifts to higher energies with decreasing temperature.

2. Boundary conditions for the BAC model wavefunction in GaInNAs-based
heterostructures

When the band anticrossing model is applied to a quantum well or any other structure with a
spatially varying composition profile along the growth direction z, all material parameters in
the BAC Hamiltonian become position-dependent. Furthermore, EM(k) has to be replaced by
a suitable Hermitian operator. For the latter we choose

EM(z)− h̄2

2

∂

∂z

1

m∗(z)
∂

∂z
(4)

which has already been used quite successfully in the past also for quantum structures based
on Ga1−x Inx NyAs1−y [10]. EM(z) and m∗(z) are the z-dependent conduction band edge and
effective mass, respectively, that would be obtained if no anticrossing with EN was present.
In practice, their values should essentially coincide with those of the corresponding nitrogen-
free material. The kinetic energy operator chosen in (4) implies that we assume a parabolic
dispersion for the unperturbed conduction band of the matrix material. For the E− branch
(Ga1−x InxNyAs1−y conduction band) which we are primarily interested in, this approximation
is, in our experience, usually sufficient, because a nonparabolicity in EM(k) would occur for
high k values where E−(k) flattens out anyway due to the strong anticrossing with the nitrogen
level. With the changes just discussed the total BAC Hamiltonian for the one-dimensional
case is now

H BAC =
(

EM(z)− h̄2

2
∂
∂z

1
m∗(z)

∂
∂z VNM(z)

VNM(z) EN(z)

)
(5)

and the corresponding time-dependent Schrödinger equation becomes

H BAC

(
�M(z, t)
�N(z, t)

)
= ih̄

∂

∂ t

(
�M(z, t)
�N(z, t)

)
. (6)

Let us now turn to the probability current density j (z, t) of the BAC model. The latter can be
deduced by calculating the time derivative of the probability density:

ρ(z, t) = �M(z, t)�∗
M(z, t) +�N(z, t)�∗

N(z, t) (7)

using (6). After some mathematics one finally obtains the continuity equation

∂ρ(z, t)

∂ t
+
∂ j (z, t)

∂z
= 0 (8)

with the probability current density

j (z, t) = 1

2m∗(z)

[
�∗

M(z, t)
h̄

i

∂

∂z
�M(z, t)−�M(z, t)

h̄

i

∂

∂z
�∗

M(z, t)

]
. (9)

It is interesting to note that there is no contribution of�N(z, t) to j . This is caused by the fact
that EN is dispersionless and reflects the localized nature of the nitrogen states.
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Based on the equations presented so far we are now able to investigate the boundary
conditions for the solutions of the stationary Schrödinger equation

H BAC

(
ψM(z)
ψN(z)

)
= E

(
ψM(z)
ψN(z)

)
(10)

at the interface between two homogeneous Ga1−x Inx NyAs1−y layers A and B with different
compositions. The first point to make here is that the lower component ψN(z) of the
wavefunction is, in general, discontinuous at the interface. Let us first discuss this for the
(somewhat unphysical) special case VNM(z) = 0: from the Schrödinger equation (10) we
obtain EN(z)ψN(z) = EψN(z). This equation only leads to a nonvanishingψN(z) if

E = EN(z). (11)

For a single homogeneous Ga1−x InxNyAs1−y layer we would have EN(z) = EN. Therefore,
all nitrogen-like eigenfunctions would correspond to the same eigenvalue:

E = EN, (12)

as expected. However, the eigenfunctions themselves could have arbitrary shape. This is
related to the fact already mentioned above that there is no contribution of the nitrogen states
to the probability current density. As a consequence the values of ψN(z) at different positions
are completely decoupled and will always result in a stationary solution of the Schrödinger
equation. (This changes for VNM �= 0, because different sites become indirectly coupled via
the EM states.)

If we now repeat the procedure described in the last paragraph for the case of two
interfacing layers A and B, (12) holds for both sides of the interface separately, i.e. there
are states with E = EA

N and E = EB
N, respectively. Since the energetic position of EN

depends on both the composition and microscopic structure of the layer under consideration
(see, e.g., [13]), we will generally have EA

N �= EB
N. For that reason, (11) can only be satisfied on

both sides simultaneously, if ψN(z) vanishes identically in material B for states with E = EA
N

and vice versa. In other words, each type of nitrogen wavefunction is confined to its own
material (where it can have arbitrary shape, see above). However, this implies that ψN(z) is,
in general, discontinuous at the interface.

For the realistic case VNM �= 0 the situation becomes more complicated. From the
Schrödinger equation (10) we now obtain

ψN(z) = VNM(z)

E − EN(z)
ψM(z), (13)

i.e. ψN(z) andψM(z) become coupled. As shown below,ψM(z) is continuous at the interface.
However, VNM(z) and EN(z) are of course both discontinuous, which means ψN(z) cannot be
continuous for all possible energy values E either.

Let us now proceed with the more important boundary conditions for the upper component
ψM(z) of the BAC wavefunction. For a heterostructure containing two Ga1−x Inx NyAs1−y

layers with different compositions interfacing at z = 0 we integrate (10) over an infinitesimal
interval [−ε,+ε]:∫ +ε

−ε

{
EM(z)ψM(z)− h̄2

2

∂

∂z

[
1

m∗(z)
∂

∂z
ψM(z)

]
+ VNM(z)ψN(z)

}
dz = E

∫ +ε

−ε
ψM(z) dz.

(14)

In the limit ε → 0 all terms apart from the second vanish. Carrying out the integration therefore
finally leads to the boundary condition

1

m∗(−ε)
∂

∂z
ψM(−ε) = 1

m∗(+ε)
∂

∂z
ψM(+ε), (15)
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which means ψ ′
M(z)/m∗(z) has to be continuous at the interface. This expression looks very

similar to the commonly used condition for quantum wells with different effective masses in
the well and barrier material, respectively (see, e.g., [15]). However, the important difference
to note is that, for nitrogen-containing material, m∗ does not correspond to the actual effective
electron mass itself but rather to the value that would be obtained if there was no anticrossing
interaction of EM with EN. In other words, m∗ is essentially the effective mass of the
Ga1−x Inx As matrix.

The second boundary condition for ψM(z) follows from the continuity equation (8). For
the stationary case ∂ρ/∂ t = 0 the latter implies that the probability current density j (z) is the
same at both sides of the interface. Using (9) and (15) it follows that for ε → 0

ψM(−ε) = ψM(+ε) (16)

i.e. ψM(z) must be continuous at the interface.

3. BAC model calculation of bound states in GaInNAs quantum wells

Based on the derived boundary conditions (15) and (16) we can now quite easily calculate
the E−- and E+-related bound states in Ga1−x Inx NyAs1−y-based quantum well structures. It
is interesting to note that this is possible without explicitly treating ψN(z), since neither (15)
nor (16) contains this component of the wavefunction. We start by using (13) to eliminate
ψN(z) from the Schrödinger equation (10). One obtains

− h̄2

2

∂

∂z

1

m∗(z)
∂

∂z
ψM(z) +

[
EM(z) +

V 2
NM(z)

E − EN(z)

]
ψM(z) = EψM(z). (17)

This is the ordinary Schrödinger equation for systems with a position-dependent effective
mass [15], apart from an additional energy-dependent contribution V 2

NM(z)/[E − EN(z)] to
the potential energy caused by the interaction with the nitrogen states. Equation (17) can be
solved using the standard ansatz

ψM(z) =
{

A exp(ikz) + B exp(−ikz) (well)

C exp(κz) + D exp(−κz) (barrier)
(18)

which leads to

k =
{

2m∗(A)
h̄2

[
E − EM(A) +

V 2
NM(A)

EN(A)− E

]} 1
2

(well material A)

κ =
{

2m∗(B)
h̄2

[
EM(B)− E − V 2

NM(B)

EN(B)− E

]} 1
2

(barrier material B).

(19)

The latter equations clearly reflect the strongly nonparabolic dispersion of the
Ga1−x Inx NyAs1−y conduction band near the nitrogen level EN. This nonparabolicity leads to a
significant deviation of the quantization energies for E−-derived states with high k (e.g. excited
conduction band states) in comparison to a simple effective mass model. Only for E− states
with small k the dispersion relation becomes approximately parabolic. The quantization
energies obtained for this case are therefore similar to those that would be obtained from
a simplified single-band effective mass model, taking into account the modified conduction
band mass due to the BAC interaction. However, it is important to note that, even for states
with small k, the results of both procedures are not exactly the same because they correspond
to slightly different boundary conditions, in particular for the derivative of the wavefunction
(see (15)).
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Since the Schrödinger equation (17) as well as the boundary conditions (15) and (16) for
ψM(z) in the BAC model are formally identical to those of the textbook quantum well (apart
from the additional contribution to the potential energy, the different meaning of m∗ and the
changed dispersion relation) the energies of the bound eigenstates can be found by numerically
solving the well-known implicit equations [15]:

cos

(
1

2
kL

)
− m∗(B)k

m∗(A)κ
sin

(
1

2
kL

)
= 0 (even states)

cos

(
1

2
kL

)
+

m∗(A)κ
m∗(B)k

sin

(
1

2
kL

)
= 0 (odd states)

(20)

where L is the thickness of the quantum well. In practice, E is scanned from the bottom to
the top of the quantum well (in the energy range of the E− and E+ branches), k and κ are
calculated for each E using (19) and the energy eigenvalues are then found by checking if one
of equations (20) is satisfied.

The described procedure is much simpler, faster and more transparent than the usual
numerical diagonalization of the BAC Hamiltonian and therefore ideally suited for the
fitting of experimental data. In the next section, we describe an example for the successful
application of this approach, namely the theoretical modelling of the temperature-dependent
effective bandgap in Ga1−x Inx NyAs1−y /GaAs multiple quantum wells (MQWs) measured by
photoreflectance spectroscopy.

4. Temperature dependence of the effective bandgap in GaInNAs/GaAs multiple
quantum wells

It is well known that the incorporation of nitrogen into Ga(In)As quantum wells or bulk
material leads to a reduced temperature dependence of the bandgap. Within the BAC model
this quenching effect can be interpreted as a consequence of the repulsive interaction between
the host conduction band EM and the nitrogen level EN (see, e.g., [2, 3, 11, 12, 14]). However,
for a quantitative modelling of the thermally induced bandgap variation we need to know the
temperature dependence of EN. This is particularly crucial in quantum well structures, where
the effective bandgap is defined by the lowest possible transition energy between quantized
electron and hole states (in our case the e1–hh1 heavy hole transition). Here the energetic
position of the nitrogen level influences not only the bandgap of the material itself but also
the conduction band dispersion and therefore the quantization energies. Unfortunately, little
is known about EN(T ) up to now, although recent investigations seem to indicate a shift to
higher energies relative to the valence band edge with decreasing temperature [2, 3].

In this paper we present some of our results concerning the temperature dependence of
the e1–hh1 transition in GaInNAs/GaAs MQWs measured by photoreflectance spectroscopy.
The electronic structure at room temperature for the particular sample discussed below has
already been investigated in detail before [10]. This provides us with an ideal basis for the
modelling of the present temperature-dependent data from which some information about the
thermal shift of EN can be extracted.

4.1. Experimental details

The GaInNAs/GaAs MQW structures discussed here were grown by solid-source molecular-
beam epitaxy on GaAs(001) using a RF-coupled plasma source for nitrogen. Afterwards
they were annealed at about 750 ◦C, where the resulting blue-shift in photoluminescence [1]
saturates (in good agreement with the results described in [13]). For the PR measurements
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Figure 1. Temperature-dependent PR spectra of a Ga0.7 In0.3N0.017As0.983/GaAs MQW with 6.2 nm
well width. For clarity, the spectra are shifted vertically relative to each other and have different
scaling factors.

we used a standard set-up in which a 670 nm laser diode followed by a chopper provided the
photomodulation. Mounting the samples in a cryostat enabled us to perform the temperature-
dependent experiments between 50 and 295 K described in the next section.

4.2. Results and discussion

Figure 1 shows the measured temperature-dependent PR spectra for a sample containing five
Ga0.7In0.3N0.017As0.983 quantum wells with 6.2 nm well widths and GaAs barriers. A clear
resonance due to the lowest e1–hh1 transition is observed in all cases. As expected, the latter
shifts to lower energies with increasing temperature, indicating a decreasing bandgap. To
extract accurate transition energy values from the measured PR spectra, fits based on the first
derivative functional form, assuming a Gaussian lineshape for the dielectric function [16],
have been used. Since weaker, partly unresolved higher energy transitions also contribute to
the PR signal we have taken them into account in our fit where necessary, particularly for the
spectra taken at elevated temperatures (see [10] for further details). The values obtained for
the temperature dependence of the e1–hh1 transition in this way are shown as data points in
figure 2.

In order to analyse these experimental results within the BAC model, a computer program
based on the equations in section 3 has been developed. All GaAs and GaInAs material
parameters entering the program have been chosen according to [17]. The temperature
dependence of the bandgaps is obtained from the Varshni equation [18] and the corresponding
change in the effective masses can then be derived by applying k ·p theory (see, e.g., [17]). We
have also included the influence of (temperature-dependent) strain on the electronic structure
of the Ga1−x Inx As matrix, however, excitonic effects are neglected. The Ga1−x Inx NyAs1−y-
specific material parameters at room temperature have been adopted from our previous
studies [10]. In the latter a series of annealed MQWs with varying In concentration
(including the one discussed here) was investigated by PR. From a theoretical fit to the
whole set of electronic transitions observed in the room-temperature spectra we found that
CNM, the parameter in the hybridization matrix element, decreases significantly when the
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Figure 2. Temperature dependence of the e1–hh1 transition energy in a Ga0.7In0.3N0.017As0.983/
GaAs MQW with 6.2 nm well width. The experimental data points have been extracted from
PR measurements, while the full and broken curves are theoretical predictions of the BAC model
assuming dEN/dT = −0.3 meV K−1 and dEN/dT = 0, respectively.

In concentration in Ga1−x Inx NyAs1−y increases. For the case of x = 0.3 discussed here,
CNM = 1.75 eV. Following [2, 3] we assume this value to be temperature-independent in our
present calculations. It should be noted that the same assumption is also made for the absolute
unstrained valence band offset. However, the choice of the latter is quite uncritical for the
predictions of our model anyway.

Based on the computational approach described above we are now able to extract the
temperature dependence of the nitrogen level EN—measured with respect to the (itself
temperature-dependent) valence band edge—from a fit to our experimental PR data. The
broken curve in figure 2 shows the expected thermal shift of the e1–hh1 transition, according
to the BAC model, if we assume EN to be temperature-independent and fixed to its room-
temperature value. Obviously, the calculated shift is significantly smaller than that found
in experiment. On the other hand, excellent agreement between measurement and theory is
found for a nitrogen-free test sample with similar In concentration. We believe this to indicate
that the nitrogen level cannot be—as often assumed—temperature-independent. Instead, EN

is suggested to move to higher energies with decreasing temperature, thus decreasing the
anticrossing-induced quenching of the thermal effective bandgap shift. Indeed, we find good
agreement of the BAC model prediction with our experimental data, if we assume a linear
dependence for EN(T ) with dEN/dT = −0.3 meV K−1 (full curve in figure 2). It should also
be mentioned that preliminary investigations of additional samples with lower In concentrations
yield very similar values. This supports and extends the results recently reported in [2, 3],
where the authors obtained dEN/dT = −0.25 meV K−1 from absorption measurements on
free-standing Ga0.93In0.07N0.004As0.996 and Ga0.96In0.04N0.01As0.99 layers.

5. Summary and conclusions

In the theoretical part of this paper we have derived and discussed the boundary conditions for
the electron wavefunction in Ga1−x Inx NyAs1−y-based heterostructures described within the
band anticrossing model. Based on these equations a procedure for the calculation of quantum
well states could be developed which avoids the cumbersome numerical diagonalization of the
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BAC Hamiltonian. In the experimental part of the paper this approach has then been applied
to model the temperature dependence of the e1–hh1 transition in Ga1−x Inx NyAs1−y /GaAs
quantum well structures measured by PR. From fits to our experimental data we find evidence
that the nitrogen level EN in Ga1−x InxNyAs1−y , measured with respect to the valence band
edge, shifts to higher energies with decreasing temperature. This supports and extends similar
results reported in the literature for low indium content epilayers.
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